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1. INTRODUCTION

Let f be a continuous 2?-periodic function, and for integer m�1, s*m ( f )
be the m th partial sum of its trigonometric Fourier series. It is well known
(see, e.g., [10]) that the de la Valle� e Poussin operators

v*n ( f ) :=
1
n

:
2n

k=n+1

s*k ( f ), n=1, 2, ...,

are linear operators with the following interesting properties, where for
integer n�0, Hn denotes the class of all trigonometric polynomials of order
not exceeding n. For all integer n�1, and continuous 2?-periodic functions f,

v*n ( f ) # H2n&1 , (1.1)

v*n (T )=T, T # Hn , (1.2)
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and

max
&?�x�?

|v*n ( f, x)|�6 max
&?�x�?

| f (x)|. (1.3)

These operators are naturally of great importance in the study of tri-
gonometric polynomial approximation. Namely, it follows immediately
from (1.2) that

max
&?�x�?

| f (x)&v*n ( f, x)|�7En ( f ),

where En ( f ) denotes the best approximation in the sup-norm by tri-
gonometric polynomials of degree at most n. Let us finally mention here a
sharper result for strong approximation proved by Leindler (see [8] and
the literature cited there)

max
&?�x�? \

1
n

:
2n

k=n+1

| f (x)&s*k ( f, x)|+�7En ( f ). (1.4)

Operators similar to these are also studied in the context of algebraic
polynomial approximation, where, instead of the trigonometric Fourier
series, one studies the Fourier series with respect to suitable orthogonal
polynomials [2]. Such operators proved to be indispensable in the theory
of weighted polynomial approximation (cf. [3�6, 14]). We observe that the
operators v*n are defined in terms of the Fourier coefficients of f, which in
turn, involve the evaluation of integrals. In many applications (e.g., [15]),
it is more desirable to have operators which have properties similar to
(1.1), (1.2), and (1.3), but which are defined in terms of the values of the
function f.

In the case of periodic functions, such quasi-interpolatory operators were
defined by Bernstein [1] where also the boundedness result analogous to
(1.3) is proved. In [20], Szabados proved similar results for certain
operators based on the zeros of Chebyshev polynomials. In this paper, we
generalize the results in two ways. First, we study operators based on the
values of the function at the zeros of certain generalized Jacobi polyno-
mials. Second, we study similar operators also in the case of certain Freud-
type weight functions, supported on the whole real axis. In this paper, we
have focused our attention on the L� behavior of the operators. The L p

behavior is studied in [16].
In Section 2, we give the preliminary definitions and estimates. These are

applied to the case of generalized Jacobi weights in Section 3 and the case
of Freud-type weight functions in Section 4.
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2. PRELIMINARIES

In this paper, for every real number x�0, we denote the class of all
algebraic polynomials of degree at most x by 6x . This somewhat unusual
convention will actually simplify our notations later when we need to dis-
cuss polynomials of degree not exceeding cn for some constant c and
integer n. Let : be a positive Borel measure on R having finite moments; i.e.,

| |t| r d:(t)<�, r=0, 1, 2, ....

If : has at least N points of increase, then there exists a unique system of
polynomials

pn (d:; x) :=#n (d:) xn+ } } } , #n (d:)>0, n=0, 1, ..., N&1,

such that

| pm (d:; t) pk (d:; t) d:(t)={1, if k=m,
0, otherwise.

(2.1)

If f is a Borel measurable function on R, we write

ak (d:; f ) :=| f (t) pk (d:; t) d:(t), k=0, 1, 2, ..., N&1,

whenever these integrals are well defined. The partial sum of the Fourier-
orthonormal expansion of f is then given by

sm (d:; f ) := :
m&1

k=0

ak (d:; f ) pk (d:), m=1, 2, ..., N.

Using (2.1), we obtain the integral representation

sm (d:; f, x)=| f (t) Km (d:; x, t) d:(t), m=1, 2, ..., N,

where it is known [2] that the Christoffel�Darboux kernel Km can be
expressed as

Km (d:; x, t) := :
m&1

k=0

pk (d:; x) pk (d:; t)

=
#m&1 (d:)

#m (d:)
pm (d:; x) pm&1 (d:; t)& pm (d:; t) pm&1 (d:; x)

x&t
.

(2.2)

69BOUNDED POLYNOMIAL OPERATORS



It is well known [2] that for each n=1, 2, ..., N&1, the polynomial
pn (d:) has n distinct zeros, all in the smallest interval S(:) containing the
support of d:. We denote these zeros by xk, n (d:), with the ordering

xn, n (d:)<xn&1, n (d:)< } } } <x1, n (d:).

If : has exactly N points of increase, these points themselves will be
denoted by xk, N , k=1, ..., N.

The Cotes numbers are defined by

*k, n (d:) :=[Kn (d:; xk, n (d:), xk, n (d:))]&1, k=1, ..., n, n=1, 2, ..., N.

One of the most important properties of these is the (Gauss) quadrature
formula:

:
n

k=1

*k, n (d:) P(xk, n (d:))=| P(t) d:(t), P # 62n&1 , n=0, 1, ..., N.

(2.3)

In this paper, we sometimes find it convenient to express the left hand side
of (2.3) as a Stieltjes integral. Thus, let :n be the measure that associates
the mass *k, n (d:) with xk, n (d:), k=1, ..., n. Then (2.3) can be written in
the form

| P(t) d:n (t)=| P(t) d:(t), P # 62n&1 , n=0, ..., N. (2.4)

In the remainder of this section, we assume that : is a mass distribution; i.e.,
it is a positive Borel measure, all of whose moments are finite, and : has
infinitely many points of increase. Thus, the orthonormal polynomials
pk (d:) are defined for all non-negative integers k.

We now proceed to define the operators which will be the discrete
analogues of the de la Valle� e Poussin means. For any integer m�1, and
Borel measurable function f defined on the smallest interval containing the
support of :, we define the discrete Fourier coefficients of f by

ak, m (d:; f ) := :
m

j=1

*j, m (d:) f (xj, m (d:)) pk (d:; xj, m (d:))

=| f (t) pk (d:; t) d:m (t), k=0, 1, ....
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The operators analogous to the de la Valle� e Poussin operators are now
defined by

{l, n, m (d:; f ) := :
l

k=0

ak, m (d:; f ) pk (d:)

+ :
2n&1

k=l+1
\2n&k

2n&l+ ak, m (d:; f ) pk (d:),

l=0, ..., 2n&1; n, m=1, 2, ....

The cases l=0, l=n, and l=2n&1 can be seen as the discretized
versions of the Feje� r means, de la Valle� e Poussin means, and Fourier sums,
respectively. In particular, {2n&1, n, 2n (d:; f ) is the classical Lagrange inter-
polation operator based on the zeros of p2n (d:). Our main interest in this
paper is in the cases when l=0 and l=n. The proofs will also show the
uniform boundedness of the operators (multiplied by suitable weight func-
tions) in the case l=[}n] for 0<}<2. The results deteriorate quickly as
} approaches 2.

The following Theorem 2.1 lists some basic properties of the operators
{l, n, m . In the sequel, if f is a function defined on a borel set A�R, we write

& f &�, A :=sup
t # A

| f (t)|.

During the proof of Theorem 2.1, we will point out that when m�2n,

{l, n, m (d:; f )=
1

2n&l
:
2n

k=l+1

sk (d:m ; f ).

Motivated by (1.4), we define the sublinear operator

{*
l, n, m(d:; f ) :=

1
2n&l

:
2n

k=l+1

|sk (d:m ; f )|. (2.5)

Theorem 2.1. Let : be a mass distribution, n�1, 0�l�2n&1, m�2n
be integers, and Zm be the set of zeros [xk, m (d:)]m

k=1 . Then

{l, n, m (d:; P)=P, P # 6l .

If f : Zm � R, then {l, n, m ( f ) # 62n&1 . Let G: Zm � [0, �), x # S(:),
I�S(:) be an interval containing x, and J be an interval such that
f (xk, m (d:))=0 if xk, m (d:) # J. Then the following estimate holds:
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|{l, n, m (d:; f, x)|�{*
l, n, m(d:; f, x)

�& fG&�, Zm"J - K2n (d:; x, x)

_{�|
I"J

1
G2 (t)

d:m (t)+
212n (d:)

2n&l

_�|
S(:)"(I _ J)

1
G2 (t)(x&t)2 d:m (t)= , (2.6)

where

12n (d:) := max
1� j�2n

# j&1 (d:)
#j (d:)

.

Proof. Let m�2n. If j, k�2n&1 then j+k�4n&2�2m&1, and the
quadrature formula (2.4) yields

| pj (d:; x) pk (d:; x) d:m (x)=| pj (d:; x) pk (d:; x) d:(x)

={1, if k= j,
0, otherwise.

In view of the uniqueness of orthogonal polynomial systems (cf. [2]), we
obtain

pk (d:)= pk (d:m), k=0, ..., 2n&1.

Therefore,

ak, m (d:; f )=ak (d:m ; f ).

A simple computation then leads to

{l, n, m (d:; f )=
1

2n&l
:
2n

k=l+1

sk (d:m ; f ).

The operator {l, n, m is thus a discretization of the de la Valle� e Poussin-type
operator for the orthonormal polynomial expansions. The first inequality
in (2.6) is now clear. Since sk (d:m ; P)=P for every P # 6l , and
k=l+1, ..., 2n, we obtain that {l, n, m (d:; P)=P for all P # 6l . Also, it is
clear that for any function f defined on Zm we have {l, n, m (d:; f ) # 62n&1 .
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The estimate (2.6) is obtained using an argument similar to the one in
[3, 18]. Let I be a neighborhood of x. Then we define

Ax f (t) :={f (t),
0,

if t # I,
otherwise,

and

Bx f (t) :={
0, if t # I,

f (t)&Ax f (t)
x&t

, otherwise,

to obtain

f (t)=Ax f (t)+(x&t) Bx f (t).

For k�2n we have

|sk (d:m ; Ax f, x)|2= } |I"J
f (t) Kk (d:; x, t) d:m (t)}

2

�{| |Kk (d:; x, t)|2 d:m (t)={|I"J
| f (t)| 2 d:m (t)=

�Kk (d:; x, x) & f } G&2
�, Zm"J |

I"J

1
G2 (t)

d:m (t).

Hence,

{*
l, n, m(d:; Ax f, x)

�- K2n (d:m ; x, x) �|
I"J

1
G2 (t)

d:m (t) & f } G&�, Zm"J . (2.7)

Next, applying the Christoffel�Darboux-formula (2.2), we write

sk (d:m ; f&Ax f, x)

=sk (d:m ; (x& } ) Bx f, x)

=
#k&1 (d:)

#k (d:) |
pk&1 (d:; t) pk (d:; x)& pk&1 (d:; x) pk (d:; t)

x&t

_(x&t) Bx f (t) d:m (t)

=
#k&1 (d:)

#k (d:)
( pk (d:; x) ak&1 (d:m ; Bx f )& pk&1 (d:; x) ak (d:m ; Bx f )).
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Since

|sk (d:m ; f&Ax f, x)|

�12n (d:)( | pk (d:; x) ak&1 (d:m ; Bx f )|+| pk&1 (d:; x) ak (d:m ; Bx f )| ),

we get using Bessel's inequality that

{*
l, n, m(d:; f&Ax f, x)

=
1

2n&l
:
2n

k=l+1

|sk (d:m ; f&Ax f, x)|

�
212n (d:)

2n&l
- K2n (d:; x, x) � :

2n

k=l

|ak (d:m ; Bx f )|2

�
212n (d:)

2n&l
- K2n (d:; x, x) �| |Bx f (t)| 2 d:m (t)

�
212n (d:)

2n&l
- K2n (d:; x, x) �|

Zm"(I _ J)

1
G2 (t)(x&t)2 d:m (t)

_& f } G&�, Zm"(I _ J) . (2.8)

Since

{*
l, n, m(d:; f, x)�{*

l, n, m(d:; Ax f, x)+{*
l, n, m(d:; f&Ax f, x),

the second estimate in (2.6) is proved in view of (2.7) and (2.8). K

3. GENERALIZED JACOBI WEIGHTS

A generalized Jacobi weight is a function of the form

w(x) :={ `
\

k=1

|x&!k|;k, x # [&1, 1],
(3.1)

0, otherwise,

where \�1 is an integer, &1=: !\< } } } <!1 :=1, and ;k>&1 for
k=1, ..., \. The class of generalized Jacobi weights will be denoted by GJ;
orthonormal polynomials with respect to a weight in GJ will be called GJ
polynomials. These polynomials are studied extensively by Nevai in [19].
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Following [19], if w # GJ is the form (3.1), and m�1 is an integer, we
write for x # [&1, 1],

w� m (x) :=\- 1&x+
1
m+

2;1+1

`
\&1

k=2
\ |x&!k |+

1
m+

;k

\- 1+x+
1
m+

2;\+1

.

If w is the Legendre weight, ;k=0, k=1, ..., \, then it is easy to see that

w� m (x)t2m (x) :=- 1&x2+
1
m

.

In the sequel, we adopt the following convention regarding constants.
The letters c, c1 , ... will denote positive constants depending only on the
weight function and other fixed parameters of the problem, but their value
may be different in different occurences, even within the same formula. The
notation AtB denotes the fact that cA�B�c1A.

Theorem 3.1. Let w # GJ, d:(x) :=w(x) dx, and

G(x) :=(1&x2)#�2
- w(x), &1<#<1.

If L�2, n�1, 2n�m�Ln and 0�l�2n&1 are integers, and f : Zm � R,
then

&{l, n, m (d:; f ) 2#
- m - w� m&�, [&1, 1] �&{*

l, n, m(d:; f ) 2#
- m - w� m&�, [&1, 1]

�
cn

2n&l
& fG&�, Zm

. (3.2)

Proof. We recall from [19] a few facts about the GJ polynomials.
Writing

xj, m (d:)=: cos %j, m=: xj, m , j=1, ..., m,

we have

0<%j, m<?, % j, m&%j&1, m t
1
m

, j=1, ..., m, (3.3)

where %0, m :=0, %m+1, m :=?. Further, 1n (d:)t1,

K2n (d:; x, x)t
n

w� n (x)
, x # [&1, 1], (3.4)
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and

*j, m t
1
m

w(x j, m) - 1&x2
j, m , j=1, ..., m. (3.5)

Theorem 2.1 now implies that for x # [&1, 1], and any interval I con-
taining x,

{*
l, n, m(d:; f, x)�c & fG&�, Zm � n

w� n (x) {�|
I

G&2 (t) d:m (t)+
1

2n&l

_�|
[&1, 1]"I

(G(t)(x&t))&2 d:m (t)= .

Using (3.5), we obtain for x # [&1, 1]

- w� n (x) {*
l, n, m(:; f, x)�c & fG&�, Zm \- S1 +

1
2n&l

- S2+ , (3.6)

where, with $ :=1&2#,

S1 := :
xj, m # I

(1&x2
j, m)$�2,

(3.7)

S2 := :
xj, m # [&1, 1]"I

(1&x2
j, m)$�2

(x&xj, m)2 .

We will estimate S1 and S2 for x�0; the case when x<0 is similar. In the
remainder of the proof, x=: cos , is a fixed number, with 0�,�?�2.

Case 1. (0�,�2�- m).

We write I% :=[0, ,+2�- m], and

I :=[x=cos %: % # I%]. (3.8)

In view of (3.3) and the fact that $>&1,

1
m

S1 =
1
m

:
%j, m # I%

sin$ %j, m�
c
m

:
%j, m # I%

%$
j, m

�c |
,+3�- m

0
t$ dt�c \,+

1

- m+
$+1

. (3.9)
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Since ,+1�- mt1�- m, we deduce that

S1�c \,+
1

- m+
$&1

�c \sin ,+
1

- m+
&2#

=c2&2#
- m (x). (3.10)

It is easy to check that sin %t% if % # [0, 3?�4], and hence, that

S2�c :
%j, m # [0, ?]"I%

sin$ %j, m

(%2
j, m&,2)2 . (3.11)

If %j, m # [?�2, ?], then %2
j, m&,2�c. Using (3.3), and the fact that $>&1,

we obtain

:
%j, m # [?�2, ?]

sin$ %j, m

(%2
j, m&,2)2�c :

%j, m # [?�2, ?]

sin$ (?&%j, m)

�cm |
3?�4

0
t$ dt�cm.

Since $<3 and ,+1�- mt1�- m,

m�m2m&($&1)�2�cm2 \,+
1

- m+
$&1

.

Hence,

:
%j, m # [?�2, ?]

sin$ %j, m

(%2
j, m&,2)2�cm2 \,+

1

- m+
$&1

. (3.12)

If 0�2,�,+2�- m�%j, m�?�2, then %2
j, m&,2�c%2

j, m and sin %j, m t%j, m .
Hence, using (3.3) and the fact that $<3, we get

:
%j, m # [0, ?�2]"I%

sin$ %j, m

(%2
j, m&,2)2�cm { 1

m
:

%j, m # [0, ?�2]"I%

%$&4
j, m =

�cm |
�

,+1�- m
t$&4 dt

�cm \,+
1

- m+
$&3

�cm2 \,+
1

- m+
$&1

.
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Along with (3.11) and (3.12), this gives

S2�cm2 \,+
1

- m+
$&1

�cm22&2#
- m (x). (3.13)

The estimates (3.6), (3.10), (3.13) yield that when 0�,�2�- m, we have

2#
- m (x) - w� n (x) {*

l, n, m(d:; f, x)�c \1+
m

2n&l+ & fG&�, Zm

�
cn

2n&l
& fG&�, Zm

. (3.14)

Case 2. (2�- m<,�?�2).

In this case, we take I% :=[,&1�(m,), ,+1�(m,)], and I :=
[cos %: % # I%]. The following estimates will be used in the remainder of this
proof often, sometimes without an explicit reference:

1
4 \,+

1

- m+�
1
2 \,+

1
m,+�,&

1
m,

�,�,+
1

m,
�,+

1

- m
. (3.15)

Also, in view of (3.3), the number of %j, m 's in I% is at most c�,�
c(,+1�- m)&1. Hence,

S1�c :
%j, m # I%

%$
j, m�c \,+

1

- m+
$&1

�c2&2#
- m (x). (3.16)

As in Case 1, we deduce easily that

:
%j, m # [3?�4, ?]

sin$ %j, m

(%2
j, m&,2)2�cm.

If 1�$<3 then

1
m

�m&($&1)�2�c,$&1,
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and if &1<$<1 then it is clear that 1�m�c,$&1. Thus, in either case,
m�m2 (,+1�- m)$&1, and we get

:
%j, m # [3?�4, ?]

sin$ %j, m

(%2
j, m&,2)2�cm22&2#

- m (x). (3.17)

Next, we write

I2, 1 :=_0,
1
2 \,&

1
m,+& ,

I2, 2 :=_1
2 \,&

1
m,+ , ,&

1
m,& ,

I2, 3 :=_,+
1

m,
, 2\,+

1
m,+& ,

I2, 4 :=_2 \,+
1

m,+ , 3?�4& ,

S2, j := :
%j, m # I2, j

%$
j, m

(%2
j, m&,2)2 , j=1, 2, 3, 4.

Then

:
%j, m # [0, 3?�4]"I%

sin$ %j, m

(%2
j, m&,2)2�c :

4

j=1

S2, j . (3.18)

We estimate S2, 3 and S2, 4 ; the estimates for S2, 2 and S2, 1 are similar.
Using (3.3),

S2, 3 �
c
,2 \,+

1
m,+

$

:
%j, m�,+1�(m,)

1
(%j, m&,)2

�c,$&2m |
�

,+1�(m,)
(t&,)&2 dt

�cm2,$&1�cm2 \,+
1

- m+
$&1

. (3.19)

If % # I2, 4 , then %&,�%�2. Using (3.3) and the fact that $<3, we get

S2, 4 �c :
%j, m # I2, 4

%$&4
j, m �cm |

�

,+1�(m,)
t$&4 dt

�cm \,+
1

m,+
$&3

�cm2 \,+
1

- m+
$&1

. (3.20)
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From (3.18), (3.19), (3.20), and similar estimates for S2, 1 and S2, 2 , we
obtain

:
%j, m # [0, 3?�4]"I%

sin$ %j, m

(%2
j, m&,2)2�cm2 \,+

1

- m+
$&1

�cm22&2#
- m (x).

Along with (3.17), this yields

S2�cm2$&2#
- m (x). (3.21)

From (3.6), (3.16), and (3.21), we conclude that

2#
- m(x) - w� n (x) {*

l, n, m(d:; f, x)�c \1+
m

2n&l+ & fG&�, Zm

�
cn

2n&l
& fG&�, Zm

. (3.22)

The estimates (3.14), (3.22), and analogous estimates for x # [&1, 0) yield
(3.2). K

We end this section by observing the ``continuous analogue'' of
Theorem 3.1. It is probably not new, but we are unable to locate a precise
reference. The proof of the following theorem is similar to that of
Theorem 3.1, but simpler.

Theorem 3.2. Let w # GJ, d:(x) :=w(x) dx, and G, L, m, n, l be as in
Theorem 3.1. Let f : [&1, 1] � R be a measurable function such that fG is
essentially bounded on [&1, 1]. Then for x # [&1, 1],

2#
- m(x) - w� m (x)

1
n

:
2n

k=l+1

|sk (d:; f, x)|�
cn

2n&l
& fG&�, [&1, 1] . (3.23)

In [16], we have examined the L p versions of Theorems 3.1 and 3.2
(with l=n) using certain analogues of the so called Marcinkiewicz�
Zygmund type inequalities. In the case of the weights in GJ, such inequali-
ties have been studied by Mastroianni, Totik, Ve� rtesi, and Xu [23], [24],
[11], [12], [13], among others.

4. FREUD-TYPE WEIGHT FUNCTIONS

Let w: R � (0, �), and Q :=log(1�w). The function w is called a Freud-
type weight function if each of the following conditions is satisfied. The
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function Q is an even, convex function on R, Q is twice continuously
differentiable on (0, �), and there are constants c1 and c2 such that

0<c1�
xQ"(x)
Q$(x)

�c2<�, 0<x<�. (4.1)

The most commonly discussed examples include exp(&|x|:), :>1. In the
remainder of this section, w will denote a fixed Freud-type weight function,
[ pk] will denote the sequence of polynomials orthonormal on R with
respect to the measure w2 (x) dx. From all notations, we will omit the
mention of this measure; thus xk, n will be the k th zero of pn , etc.

Our main theorem in this section is the following.

Theorem 4.1. Let w be a Freud-type weight function. If f : Zm � R, and
L, $>0, then for each integer n�1 and (2+$) n�m�Ln,

&{l, n, m ( f ) w&�, R�&{*
l, n, m( f ) w&�, R�

cn
2n&l

&wf &�, Zm
, (4.2)

where Zm=[xk, m]m
k=1 , and c is a positive constant depending only on w, L,

and $.

In order to prove this theorem, we summarize some of the important,
relevant facts regarding Freud polynomials. Associated with the weight
function w are two sets of numbers: The Freud-number qx is the least
positive solution of the equation

qx Q$(qx)=x, x>0.

The number ax is the solution of the equation

x=
2
? |

1

0

ax tQ$(ax t)

- 1&t2
dt.

It is not difficult to see that ax tqx tq2x , x>0. One of the most impor-
tant properties of ax is the following: For every integer n�1 and P # 6n ,
(cf. [17], [14]),

max
x # R

|P(x) w(x)|= max
|x| �an

|P(x) w(x)|,

and, if 0<p<�, N is the least integer not exceeding n+2�p, then

|
R

|P(x) w(x)|2�2 |
|x| �aN

|P(x) w(x)| p dx. (4.3)
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Lemma 4.1. Let n�1 be an integer.

(a) For x # R,

Kn (x, x)�c
n

qn
w&2 (x). (4.4.)

(b) We have

1n tqn . (4.5)

(c) For any '>0 and |x|�(1&') an ,

Kn (x, x)�c(')
n

qn
w&2 (x). (4.6)

(d) For any '>0 and xk, n , xk&1, n , xk+1, n in [&(1&') an ,
(1&') an],

xk&1, n&xk, n txk, n&xk+1, n t
qn

n
.

(e) If |x&t|�cqn �n, |x|, |t|�c1 qn , then w(x)tw(t).

(f ) Let b # R and 0�p�2. Then

c |
c1 qn

0
w2& p (x)(1+x2)b dx� :

n

j=1

*j, nw&p (xj, n)(1+x2
j, n)b

�c2 |
c3 qn

0
w2& p (x)(1+x2)b dx. (4.7)

Proof. Part (a) and (b) are proved in [6]. Parts (c) and (d) are in the
paper [9] by Levin and Lubinsky. The most difficult part of the proof is
a judicious discretization of a certain logarithmic potential. A simpler con-
struction is given in [14] (cf. [22]) under slightly stronger conditions,
which are also satisfied by exp(&|x|:), :>1. Using (4.1), it is not difficult
to verify (cf. [6]) that Q$(Aqn)tn�qn for any A>0. Part (e) is then a
simple application of the mean value theorem. Part (f) was proved by
Knopmacher and Lubinsky [7] under slightly different conditions on the
weight function. As stated, the result is proved in [14] (Theorem 8.2.7) using
their ideas. K

We are now in a position to prove Theorem 4.1.
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Proof of Theorem 4.1. In this proof, let x # [&a2n , a2n] be a fixed
number, and & be an integer such that x # [x&+1, m , x&, m). The constants in
this proof will generally depend upon $ and L. Necessarily, there exists
'>0 such that |x|�(1&') am . We use the estimate (2.6) with I=
[x&qm �m, x+qm�m], with J equal to the empty interval, and G=w. The
set S(:) in this case is R. In view of (4.4) and (4.5), we obtain the estimate

|w(x) {l, n, m ( f, x)|�c & fw&�, zm {� n
qn

|
I

1
w2 (t)

d:m (t)

+� nqn

(2n&l)2 |
R"I

1
w2 (t)(x&t)2 d:m (t)= . (4.8)

The number of points xj, m in I is bounded from above, independently of n
and m. For each such xj, m # I, (4.6) (with m in place of n and a different
value of ') shows that

*j, mw&2 (x j, m)�c
qm

m
.

Hence,

|
I

w&2 (t) d:m (t)�c
qm

m
�c

qn

n
. (4.9)

Let

I1 :=_&\1&
'
2+ am , \1+

'
2+ am &>I

and

I2 :=\&�, &\1&
'
2+ am +_ \\1&

'
2+ am , �+ .

In view of (4.7) with b=0 and p=2,

:
xj, m # I2

w&2 (x j, m) * j, m

(x&xj, m)2 �ca&2
m :

n

j=1

w&2 (x j, m) *j, m�cq&1
m . (4.10)

If xj, m # I1 , then

|x&xj, m |t |x&xj&1, m |t |x&xj+1, m |
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and

w&2 (xj, m) * j, m t
qm

m
tx j, m&xj+1, m .

Therefore, taking into account the fact that mtn, we obtain

:
xj, m # I1

w&2 (xj, m) * j, m

(x&xj, m)2 � :
xj, m # I1

x j, m&x j+1, m

(x&xj, m)2

�|
R"I

dt
(x&t)2�c

m
qm

�c
n

qn
. (4.11)

Substituting the estimates (4.11), (4.10) and (4.9) into (4.8), we arrive at
(4.2). K

We end this section by observing the following amusing inequality,
obtained by using Theorem 4.1. with a polynomial of degree n in place
of f, and observing that {n, n, m (P)=P for all P # 6n .

Corollary 4.1. Let w, L, $, n, m, Zm be as in Theorem 4.1. Then for
any P # 6n ,

c1 &wP&�, R�&wP&�, Zm
�&wP&�, R . (4.12)

In [16], we have shown how estimate such as (4.12) together with the
uniform boundedness of the de la Valle� e Poussin means of the Freud poly-
nomial expansions lead to estimates similar to (4.12) with an L p norm
instead of the supremum norm. In turn, it is well known that such
estimates are important in the study of interpolatory processes at the zeros
of Freud polynomials.
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